高三数学教学计划

时间:2023-09-01 11:20:50
高三数学教学计划

高三数学教学计划

日子如同白驹过隙,我们又将接触新的知识,学习新的技能,积累新的经验,让我们一起来学习写计划吧。好的计划是什么样的呢?以下是小编收集整理的高三数学教学计划,欢迎大家分享。

  高三数学教学计划 篇1  高三数学教学计划 篇2

该标准第一次大量引入了选修专题,这些专题内容新颖,对中学教师的教学提出了严峻的挑战。

对称与群是其中专题之一,很多教师对本专题内容感到很陌生,无法进行教学。

因此,高师生在走出校门之前能得到相关的高中选修课程学习是十分必要的。

基于以上原因在高师生中作“对称与群”教学设计实验研究。

本研究首先对贵州省少数民族地区高中教师和高师生作关于“对称与群”了解情况问卷调查,确定进行教学设计的必要性,然后根据对称与群自身具有的逻辑体系,采用现代教学设计的“系统设计法”,其中包括学习需要分析、教学内容分析、学习者分析、教学策略选择、教学过程确定、教学评价等环节。

其次,本研究进行了“对称与群”这一选修专题的试验班教学,对所作的教学设计的科学性、所编教材的有效性进行了实践检验,结果表明:

“对称与群”教学设计方案是可行且有效的。

同时,类比方法是学习“对称与群”最常用的方法;对学生的学业评价采用多种评价方式结合。

最后对本研究出现的问题进行总结并提出对本研究的期望..……

  高三数学教学计划 篇3

一、指导思想 ……此处隐藏17833个字……>设计意图: 以旧引新, 打破学生原有认知结构的平衡状态, 刺激学生认知结构根据问题情境进行自我组织, 促进认知发展. 从直角三角形边角关系切入, 符合从特殊到一般的思维过程.

(二)探究正弦定理 abc?

?猜想:在任意的△ABC中, 各边和它所对角的正弦的比相等, 即: sinAsinBsinC

设计意图:鼓励学生模拟数学家的思维方式和思维过程, 大胆拓广, 主动投入数学发现过程,发展创造性思维能力.

三角形分为锐角三角形、直角三角形和钝角三角形,对于直角三角形,我们前面已经推导出这个关系式是成立的,那么我们现在是否需要分情况来证明此关系式?

设计意图:及时总结,使方向更明确,并培养学生的分类意识

①那么能否把锐角三角形转化为直角三角形来求证? ——可以构造直角三角形

②如何构造直角三角形?

——作高线(例如:作CD⊥AB,则出现两个直角三角形) ab?③将欲证的连等式分成两个等式证明,若先证明, sinAsinB那么如何将A、B、a、b联系起来?

——在两个直角三角形Rt△BCD与Rt△ACD中,CD是公共边:

在Rt△BCD中,CD= a sin B , 在Rt△ACD中,CD= bsinA

ab ??asinB?bsinA? sinAsinBbcsinB ? sinC?

——作高线AE⊥BC,同理可证.

设计意图:把不熟悉的问题转化为熟悉的问题, 引导启发学生利用已有的知识解决新的问题.

(四)目标检测

小编为大家提供的高三上学期数学教学计划大家仔细阅读了吗?最后祝同学们学习进步。

《高三数学教学计划.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式